EXAM II, MA3042, Some quarter Name:

This is not precisely an old exam, but all of these problems have appeared on past exams. Problems 1–4 would make a good exam, as would problems 1–3 together with 5.

1. Let
$$S = \text{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \right\}$$
. Find a basis for S^{\perp} .

2. Suppose that we have experimental data as shown in the accompanying table.

x	1	2	3	4
y	1	2	2	3

- (a) Formulate the matrix equation $A\mathbf{x} = b$ that results from attempting to fit a line to the given data, and show that $\mathbf{b} \notin CS(A)$.
- (b) Factor A as A = QR, and use this factorization to obtain a least-squares solution $\hat{\mathbf{x}}$ to the equation from (a).
- (c) Calculate the residual $r(\hat{\mathbf{x}}) = \mathbf{b} A\hat{\mathbf{x}}$.
- (d) Verify that $r(\hat{\mathbf{x}}) \in N(A^T)$
- 3. Let $\theta \in \mathbf{R}$, $\mathbf{x}_1 = (\cos \theta, \sin \theta)^T$, and $\mathbf{x}_2 = (-\sin \theta, \cos \theta)^T$.
 - (a) Show that $\{\mathbf{x}_1, \mathbf{x}_2\}$ is an orthonormal basis for \mathbf{R}^2 .
 - (b) Given a vector $\mathbf{y} = (y_1, y_2)^T \in \mathbf{R}^2$, write \mathbf{y} as a linear combination $c_1\mathbf{x}_1 + c_2\mathbf{x}_2$.
 - (c) Verify that $c_1^2 + c_2^2 = ||\mathbf{y}||^2 = y_1^2 + y_2^2$.
- 4. Let $A = \begin{bmatrix} a & 1 & -2 \\ 0 & 1 & 4 \\ 0 & 4 & 1 \end{bmatrix}$. For precisely what values of a is A diagonalizable? Explain.
- 5. Let $A = \begin{bmatrix} .7 & .4 \\ .3 & .6 \end{bmatrix}$. Find a diagonalizing matrix X for A, and calculate $\lim_{n\to\infty} A^n$.